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T h e  r a n d o m l y  forced,  one -d imens iona l  Burgers  flow is dealt  wi th  by the  
m e t h o d  of  the  charac ter i s t ic  func t iona l  equa t ion .  The  t ime  deve lopmen t  o f  
the  s tochas t ic  s e c o n d a r y  flow is s tud ied  numer ica l ly  by the  M o n t e  Car lo  
q u a d r a t u r e  o f  the  integral  r ep re sen t a t i on  o f  so lu t ion  for  two types  (white 
a n d  " r e d " )  o f  r a n d o m  force  fields. A turbulence- l ike  behav io r  o f  the  flow 
appea r s  for  a supercr i t ical  R e y n o l d s  n u m b e r ,  a n d  its s t ruc tu re  is s tud ied  in 
detail .  

KEY W O R D S :  Random force;  Burgers f l o w ;  characteristic functional 
equation ; Monte Carlo quadrature ; turbulence ; Fokker-Planck equation ; 
random wa lk ,  nonlinear instability ; ergodicity. 

1. INTRODUCTION 

Turbulent fluids excited by random forces have been studied by several 
authors31-4~ The introduction of a random force field into a fluid is not only 
convenient for discussing a stationary (nondecaying) turbulence, but is also of  
practical significance in that stochastic disturbances (supposed to be found 
in the physical world) can be taken into account. In fact, the natural random 
force due to molecular fluctuation was formulated by Landau and Lifshitz. ~5~'3 

z D e p a r t m e n t  o f  Mechan ica l  Engineer ing ,  l wa t e  Univers i ty ,  Mor ioka ,  J apan .  
Na t i ona l  Ae rospac e  L abo ra t o ry ,  T okyo ,  J apan .  

8 A m o r e  extens ive  resul t  was  given by Kel ly  a n d  Lewis.  ~*~ 

245  

�9 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publica- 
tion may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, 
mechanical, phot~opying, microfilming, recording, or otherwise, without written permission of the publisher. 



246 I. Hosokawa  and K. Y a m a m o t o  

In any case, the behavior of the fluid can then be described probabilistically 
by the generalized characteristic functional (gcf) equation (3,7~ [see Eq. (1)] 
only if the quality of the random force is specified. Usually, the probability 
distribution of the random force is considered as Gaussian with zero mean, 
as is the case with Landau and Lifshitz's formulation, and in such cases the 
generalized characteristic functional equation takes a comparatively simple 
form. (3~ With no random force, the equation reduces to the well-known Hopf  
equation. (8~ The difference in mathematical character between the generalized 
characteristic functional equation with such a Gaussian random force and 
the Hopf  equation is worth mentioning. That is, the Fourier transform of the 
former gcf is a typical Fokker-Planck or Kolmogorov equation (as is shown 
in Section 2), while that of the Hopf  equation is only a first-order (functional) 
differential equation. This fact is important in showing that the generalized 
characteristic functional equation is irreversible, which ensures the approach 
to a unique, ultimate stationary state irrespective of initial states of the fluid 
even with zero viscosity. In other words, in the former case we deal with a 
simple Markovian stochastic process of fluid variables. Accordingly, it is 
proved that the flow is ergodic in the stationary state, where fluid variables 
can be considered as the so-called stationary random functions3 9~ In the Hopf  
equation, however, the existence of such a unique stationary state is question- 
able. This is because the probability functional propagates along the charac- 
teristic curves in the (phase) function space, depending on initial conditions. 4 
This fact alerts us to question the ergodicity of the process governed by the 
Hopf  equation. At this point, it may be said that the generalized characteristic 
functional equation stands on a sounder basis than the Hopf  equation because 
it is supported by the ergodic theorem. 

In this paper, we study randomly forced, one-dimensional Burgers flow 
as an example of solving numerically the generalized characteristic functional 
equation. We are interested in the formation and structure of stationary 
inhomogeneous turbulence. Then, as Burgers first considered a model of 
channel flow, (11~ the secondary flow is assumed to be limited in space, to 
interact with the cons tan t  main flow, and to vanish at the flow boundaries. 
This flow is stable in the sense of linear theory, resulting in vanishing secondary 
flow if the Reynolds number relevant to the main flow velocity and the space 
length is not high (<  ~r2). With a random force field present, however small, 
the situation is somewhat changed. The random force always excites the 

4 This fact is supported by a consideration of entropy. The entropy preservation of an 
ensemble of incompressible nonviscous flows was proved by Tatsumi and Ikeda3 TM If 
this is so, it is impossible for an ensemble of flows starting with an arbitrary entropy to 
approach irreversibly to a certain special ensemble with a definite entropy (such as the 
steady-state white-noise ensemble derived by Hopf ~8~) without any other stochastic 
effect, e.g., stochastic boundary condition. 
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secondary flow to some degree, so that the perfect laminar state is never 
realized, but randomness of the flow velocity is insignificant if the Reynolds 
number is low. However, the flow may develop into another state for a super- 
critical Reynolds number (> rr2), since the secondary flow must be greatly 
excited in this case. We will consider two types of random force fields: white 
and "red." The ultimate stationary state depends on the type of random force 
field, but we may find a certain greater resemblance of both cases for high 
Reynolds numbers than we expect. 

A challenging point in our study is the analytical difficulty in solving the 
basic functional equation. We avoid this difficulty by adopting a Monte 
Carlo method, utilizing the fact that the integral representation of the solu- 
tion may be treated by means of sampling, i.e., a (generalized) random walk. 
Our random walk must be executed in a highly multidimensional space to 
obtain a good approximation. It is well known that the Monte Carlo quadra- 
ture is effective for such a many-dimensional case. The formulation is de- 
veloped in Section 2 and the result is discussed in Section 3. In addition, a 
precise study of the nonlinear instability of the Burgers flow is presented in 
Section 4. There, it is verified that a number of Burgers' steady solutions ~11~ 
of the secondary flow equation are approached, each depending on particular 
(small-disturbance) initial conditions. It will be pointed out that because of 
the existence of more than one supercritical steady solution, the stationary 
turbulences obtained in this Burgers flow are of pseudo character. 

. FORMULATION 

According to the previous work, (a~ the so-called generalized character- 
istic functional equation is written as 

O~/~t = i f y(x)x[~/i 8y(x)]~ dx 

,ff - ~ y (x )y (x ' )F(x ,  x ')~ dx dx' (1) 

where ~[y(x), t] is the characteristic functional at time t of the stochastic 
velocity field v(x) of the flow, x is the space coordinate, )r is an operator such 
that ~v/Ot = xv is the dynamical equation governing v(x, t) when no 
random force exists, 3/~y(x) is the functional differentiation with respect to y 
at x, and F is related to the correlation function of the random force field 

f ( x ,  t) as follows: 

( f ( x ,  t ) f (x ' ,  t ' ) )  = F(x ,  x ')  3(t - t ')  (2) 

with ( ) indicating the ensemble average. Here it is assumed that the proba- 
bility distribution o f f  is Gaussian with zero mean. [More complicated cases of 
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the probability distribution of the random force lead to more generalized 
characteristic functional equations than Eq. (1). r Naturally, F is positive 
definite. 

In our Burgers flow, m) x is a scalar variable, confined in [0, b], and v ( x )  

is considered as the secondary flow velocity, since it only takes charge of 
stochasticity of the total flow. Then, X is defined as 

U 82v 8v 
Xv = ~ v + v~-~x 2 - 2v 8--x (3) 

where U is the main flow velocity and v is the kinematic viscosity. We assume 
that U is constant, so that Burgers' equation for the main flow velocity may 
be replaced by the force equation 

P = v ~  + ~  v 2dx (4) 

which indicates the external force necessary to maintain the flow. As the 
secondary flow grows, P should increase. Obviously, our assumption makes 
the treatment of the Burgers flow very simple without losing its essence. (If  
U is a variable, we should have two simultaneous integrodifferential equations, 
even though P is assumed to be a constant.) The boundary conditions on v are 

v = 0  for x = 0 a n d b  (5) 

If  the units are changed so that we measure velocity by U and distance by b, 
Eqs. (3)-(5) are rewritten as 

1 82v 2v 8v 
XV = v + ~ 8x--- 5 - O-'x (6) 

P =  (l/R) + v 2 d x  (7) 

v = 0  for x = 0 , 1  (8) 

where R = U b / v ,  the Reynolds number of the flow. 
If  we expand v ( x )  in terms of the basic wave modes which satisfy Eq. (8), 

21/2 sin n r r x  for n = 1, 2 ..... the dynamical equation ~ v / O t  = xv may be 
replaced by 

- - - v ~ v , _ m  - 2 VmV,+m (9) 

where vn is the amplitude of each wave mode. N is infinite, but it may be 
replaced by a finite number in a truncation approach. Let us consider ~b as a 
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function of {y,} rather than a functional ofy(x) through the expansion y(x )  = 
21/2y, sin nrrx. Then Eq. (1) is rewritten as 

?~b i ~  3 1 
~"~ = YnXn ~ r -- -~ ~ ~ FmnYmYn~ b (10) 

m n 

where 

f fo Fm~ = 2 sin(m~rx) sin(mrx') F(x ,  x ')  dx  dx'  (1 l) 

For convenience, let r be approximated by r which is a function of 
{y~; n < N}, and consider the Fourier transformation 

r = f ... f pNexp(i L y.v.) r-~= dv./(2~)l/~ (12) 

Then, we have the (probability) equation for PN: 

(3p~.0_7 _~.0 ~ 3  2 1 8 2 

which is a Fokker-Planck or Kolmogorov equation in many dimensions. 
When Fm~ is diagonal, as is the case in this work, as Fm~ = 8m~B~ ( >10, because 
F is positive definite), the solution of this equation is simply given as the 
following successive integral with Gaussian measures 5: 

pN({v,~}, t) . . . .  O,~(v{ + 1/v,~J)fN({v~~ O) dvJ  (14) 
c o  j = 0  "a ,= l  

in the limit M ~ ~ ,  where 

O.(v~ + 1/v.~) = (2~r At B.)-1/2 exp[-(v~ +1 - v~ y - At  X.VJ)z/(2 At  B.)] 
(15) 

where At = t i M  and v~ M = v~. If  B~ = 0, 0~ reduces to a delta function: 
3(v~ +~ - v~ j - At  X~V O. In this work, the initial value ofpn is set as 

N 

pu({v,}, 0) = ~ 3(Vm ~ (16) 

assuming that initially the secondary flow is vanishing. 
As is known from Eq. (12), any correlation of v(x, t) or {v,} at time t 

can be given in terms of an integral with the measure (14). The integral is 
highly multidimensional and complicated looking, but it is executable with 
the aid of a Monte Carlo quadrature, even if only approximately. Since 0, is 
Gaussian, to estimate the integral by importance sampling with the measure 

5 The propagation kernel method may be used for the derivation. See, e.g., Ref. 12. 
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I-I I-i o, dv, j involves making an ensemble of the random walks with the 
drift {At X,V} [starting from the origin in the (phase) space of v(x)] to average 
the estimator in the integral over the ensemble. As is seen from Eq. (15), each 
step of such a random walk is realized by the recurrence formula 

v s+l = v j  + At X~V s + (At B~)li2r (17) 

where r is a standard normal random number. The approximation is expected 
to be improved by increasing M and N. 

It is also to be noted that the random force term in Eq. (17) should be 
proportional to At 1/2. This is an essential property of the general Brownian 
motion. [If this term is excluded, it is evident that Eq. (17) gives Euler's 
method of solving Eq. (9).] 

Finally, the energy balance of the secondary flow is easily formulated by 
integrating Eq. (13) after multiplying both sides by ~ v~2/2; that is, 

From Eq. (9), we have 

@,X~V) : ~" (1 - n%r2/R)@, 2) (19) 

Then, it is clear that BU2 is the spectrum of the random-force power input to 
the flow. The positive effect of the right-hand side of Eq. (19) indicates the 
power input from the main flow. 

3. RESULTS OF THE M O N T E  CARLO Q U A D R A T U R E  

3.1. Select ion of N and At 

In the present calculation, N = 20 is used. In order to give an idea of 
how accurate the result to be obtained is, the laminar flow development for 
the case of R = 100 governed by Eq. (9) was calculated for both N = 20 and 
N - -  40, putting, initially, v~ = 0.01, and using the finite-difference method 
(Euler's method) with At = 0.004. At t = 20.0, the calculated flow almost 
perfectly arrives at a steady state, the theoretical energy spectrum of which 
was given by Burgers as the solid line in Fig. 1 [Eq. (24) for m = 1]. Comparing 
both cases of approximation in the figure, we conclude that a substantial 
difference between the approximations and the exact values appears only for 
a few modes before the cutoff. (This discrepancy is considered to be due to 
accumulation of the energy to be transferred to higher wave-number modes.) 
Relying on this trial calculation, we will set At = 0.004 also in the Monte 
Carlo quadrature. 
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Fig. 1. Squared wave-number component 
of the secondary flow (without noise) veloc- 
ity for R = 100 at t = 20.0 with the initial 
value v, 2 = 0.0001 for all n, plotted against 
the wave number. 
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3.2. W h i t e  Noise  and "Red" Noise  

W e  cons ider  two types  o f  r a n d o m  force fields; one is given by  B,  = 0.01 
for  all n ~< N, and  the o ther  by  B1 = B2 = 0.01 and B ,  = 0 for  n 1> 3. The  
fo rmer  is called white  noise and  the la t ter  " r e d "  noise. By vir tue o f  Eq. (11), 
F(x, x') for  these cases is expressed as 

N 

F(x, x') = 2 ~ B~ sin nzrx sin nzrx' (20) 

W h e n  we are interested in the  energy spec t rum 

E. . . . .  v.2pN({V.), t) dv. (21) 

then  the e s t ima to r  to  be averaged over  the ensemble  is �89 The  results are  
p lo t t ed  in Figs.  2 -5  for  bo th  types  o f  noise  for  R = 10 and  100. The  scale o f  
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Fig. 2. Energy spectrum of the stochastic secondary flow with white noise for R = 10. 
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Fig. 3. Energy spectrum of the stochastic secondary flow with white noise for R = 100. 
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Fig. 4. Energy spectrum of the stochastic 
secondary flow with "red" noise for R = 10. 
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the ensemble, that is, the number of  all random walks executed, is 200; in 
fact, this scale is large enough to guarantee a good approximation to the 
ensemble average. Although the critical Reynolds number is rr 2 in linear 
theory, R = 10 (~> 7r 2) seems to be still on the stable side, as is seen from a 
comparison of these figures. In fact, the excited energy for R = 10 is much 
lower than that for R = 100 for both types of  noise. The energy spectrum 
with " r e d "  noise shows too weak a nonlinear interaction working to convey 
energy to higher wave-number modes, even at the stationary state of t = 3.0. 
We note that in Fig. 2 the n -2 spectrum for R = 10 for white noise is not 
formed by the nonlinear interaction in the Burgers equation but arises for the 
following reason: For R small, when the nonlinear interaction is relatively 
negligible, any interaction between different waves vanishes from Eq. (18). 
Then, at the stationary state, we may have the separate relation for each mode 

( v .  2) = �89 - n2~r2/R) (22) 

which is indicated by the solid line in Fig. 2. Equation (22) gives the n -2 
spectrum except for n 2 ~ R/Tr 2, where the plotted points at t = 3.0 nearly 
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Fig. 5. Energy spectrum of the stochastic secondary flow with "red" noise for R = 100. 
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Fig. 7. Average velocity profile of the sto- 
chastic secondary flow with "red" noise. 
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coincide with the solid line; the discrepancy f rom the n -2 law in the high- 
wave-number region is obviously the error of  our approximation (N = 20). 
For  R = 100, the energy spectra for both types of noise rather resemble each 
other in shape, and they may be characterized by the n -2 law until n = 10. 
For  convenience of comparison, a common solid line was inserted in Figs. 3 
and 5, which is the theoretical curve given from Eq. (24) or (26) (for m = 1). 

I f  another estimator is considered as v(x), the average velocity field of  
the secondary flow is calculated by the same ensemble of random walks, as is 
plotted in Figs. 6 and 7. For R = 10 at t = 3.0, we have somewhat excited 
states caused by the random force action in place of the perfect laminar state, 
v(x) = 0; and there, the higher wave-number modes are too weak to affect 
the average velocity profile. The profiles for R = 100 at t = 3.0 are similar 
in both figures, resulting in the steady positive-gradient straight line shown, 
which is the theoretical curve given from Eq. (29) (for m = 1), except near 
the boundaries of  the flow where shock dissipation occurs. The reason for 
this will be clarified in Section 5. 

3.3, Deve lopment  of  Turbulence 

The sum of E~ can be plotted against t to show the time development of  
the secondary flow energy, as is seen in Figs. 8 and 9. The solid lines indicate 
the total random-force energy input to the flow until time t. (Note that the 
power of  white noise is ten times as much as that of  " r e d "  noise.) Hence, we 
know that the energy level of  the fully developed secondary flow is almost 
indifferent to the type and intensity of  random force. This fact holds both for 
nearly laminar flow (R = 10) and for turbulent flow (R = 100). To confirm 
this, Fig. 10 shows the result for R = 100 with white noise of  a much lower 
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Fig. 10. Time development of the energy of the stochastic secondary flow with very weak 
white noise. 

power level. In this case, the turbulence energy grows far beyond the total 
random-force energy input to the flow, until it reaches almost the same level 
as reached in the other cases at t = 7.0. For reference, the energy spectrum 
of this case is shown in Fig. 11. 

It  is instructive to compare Figs. 3, 5, and 11. We have said that the 
energies of  these fully developed turbulences are almost on the same level, 
but strictly speaking, there is still a distinction. We can enlarge this distinction 
by looking into the variance of the velocity field. 

3.4. Va r iance  

The variance field ([v(x) - (v(x))] 2) is shown for each case in Figs. 
12-14. While that  of  nearly laminar flow (R -- 10) is almost independent of  
the type of random force, that of  turbulent flow (R = 100) varies. The 
difference of  the variance level for each case depends almost linearly on the 
small distinctions in turbulent energy level seen in Figs. 3, 5, and 11; this is 
because (v(x) 2) = 2 ~ E,,, while (v(x)) is almost the same for all cases (see 
Figs. 6 and 7). The origin of  the distinction will be clarified in Section 5. 
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Fig. 12. Velocity variance field of the 
stochastic secondary flow with white 
noise. 
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Fig. t3. Velocity variance field of the sto- 
chastic secondary flow with "red" noise. 
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4. NONLINEAR INSTABILITY 

The overall character of the ensemble dynamics of the randomly forced, 
one-dimensional Burgers flow has been clarified to a large degree, but in 
order to understand further the formation of turbulence, it is useful to know 
the development of nonlinear instability of individual flows without random 
forces, starting from the quiescent state with a small disturbance. We in- 
quired into the growth of  {v,}, according to Eq. (9) (with N = 20), with 
various initial conditions for various R. Some results are seen in Figs. 15-24 
[v,(t) for n high was omitted, because the values are near zero]. First, it is 
natural that all velocity modes are attenuated in subcritical flows and return 
to the stable laminar state. (See Figs. 15 and 16. For R = 1, the time step At 
was taken as 0.0005 to avoid numerical instability.) For R = 10 (which case 
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Fig. 15. Time development of each mode of the secondary flow (without noise) velocity 
with the initial value v~ = 0.01 for all n for R = 1. 
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Fig. 16. Time development of each mode of the secondary flow (without noise) velocity 
with the initial value v .  = 0 .01  f o r  a l l  n f o r  R = 9.  
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Fig. 17. Time development of each mode of the secondary flow (without noise) velocity 
with the initial value v, = 0.01 for all n for R = 10. 

we call "nearly subcritical" in Section 3), only the first mode grows very 
slightly (see Fig. 17). 

However, the development of each mode for R = 100 is quite dramatic. 
(See Figs. 18-24.) The linear growth of instability in the flow is prevented by 
the nonlinear effect of  Eq. (9); all modes converge to various steady values. 
A comparison of Figs. 18 and 19 shows how the time for the flow to reach a 
steady state depends on initial conditions. Figures 20-22 show that there are 
at least three steady states other than the one in Figs. 18 and 19; their realiza- 
tion depends on initial conditions. According to Burgers, {1~) there are many 
other steady solutions depending on R. 

All those theoretically given for large R may be expressed in terms of the 
following four families: 

(I) v~m(x)=g X 2m -- 1 1 + t a n h 2 ( 2 m  1) x k=, - 2m 

(23) 

o r  

v ~ =  
21/2R sinh[(2m - 1)nrr2/R] 

x ( -  1)" + 2 k=l ~ c~ ~-~--Z--~ n~ (24) 
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1.0 2D ~0 4O 5.0 6.0 ZO 8.0 

t 
Fig. 18. Time development of each mode of the secondary flow (without noise) velocity 

with the initial value v. = 0.01 for all n for R = 100. 

(II)  v:am(x)  = -~ x + "2m - 1 

o r  

1 ~ [ l + t a n h  R 
2 m -  1 2 ( 2 m -  1) k = l  

x x + 2 m ~  2m 

~r 1 
~Im = 21/2R s i n h [ ( 2 m  - 1)nrr2/R] 

x 1 + 2  cos ~-~ 1 2 m -  1 nrr 
/ r  

(26) 
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Fig. 19. Time development of each mode of the secondary flow (without noise) velocity 
with the initial value v~ = 0.0001 for all n for R = 100. 

1{ 1 ~ [ R ( 2k- l ) ]}  (27) 
( I I I )  v m m ( x ) = ~  x - ~  1 + t a n h ~ m  m x 2 m  

k = l  

O F  

(iv) 

R sinh(2mmr2/R) _ cos mr (28) 

1{ 1 1 m+lr R 
v'Vm(x) = ~ X + 2m 2-mk=~l[1 + t a n h ~ -  ~ 

( 2k_1 1)]} 
x x 2m + (29) 
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Fig. 20. Time development of each mode of the secondary flow (without noise) velocity 
with the initial value v, = -0.01 for all n for R = 100. 

o r  

/ ) I V m  = ~r 1 
211Z R sinh( 2mmr2 / R ) 

~-, [ [2k  - 1 
x 1 + ( - 1 )  ~ + 2 2 ,  c o s / / .  - - -  

k=a 1~ 2m 

the profiles o f  which are sketched in Fig. 25. The reason why equal shocks are 
displayed in [0, 1] in such a rational way, as sketched, is explained in Mur-  
ray's  (la) recent t reatment o f  the same Burgers flow by the phase plane method.  
The summat ion terms in Eqs. (24), (26), and (30) are unders tood to vanish for  
m = 1. As may  also be unders tood f rom Fig. 25, m is the number  o f  shocks in 
[0, 1] for  families I, I I ,  and I I I ;  family IV has rn + 1. As is easily seen, the 
nonvanishing modes o f  v~ 1 and v~ 1 begin with n = 1, but  those o f  ~x~l and 
v Iv1 begin with n = 2. Further, those o f  42 and v~ 2 begin with n = 3, but  
those o fv  m2 and ~v2 begin with n = 4; .... On  the other hand, when R = 100, 
we have 

1 -n~zr~/R < 0 for n /> 4 (31) 

Hence, it is known that  solutions VIn II2 and v~ v2, and the others beginning with 
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Fig. 21. Time development of each mode 
of the secondary flow (without noise) veloc- 
ity with the initial value v, = 0.1 for n = 2, 
and with v, = 0.0 for n g: 2, for R = 100. 
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n = 4, 5,..., never  satisfy the  s teady condi t ion  o f  Eqs. (18)-(19). Then,  
poss ible  s teady solut ions  for  R = 100 are  restr ic ted to  v I1, v m,  v Ira,  v~Vl, v I2, 

and  v az. F igures  18 and  19 co r re spond  to v n,  Fig. 20 to  v m ,  Fig. 21 to  v m~, 
and  Fig.  22 to  v Iw. 

The  existence o f  such a n u m b e r  o f  s teady solut ions  is character is t ic  o f  
the  present  one-d imens iona l  Burgers flow. Usual ly ,  we would  never expect  
more  than  one s teady solut ion to exist for  a supercri t ical  flow. We numer ica l ly  
invest igated the s tabi l i ty  o f  the solut ions;  v I1 and v m are stable and  v Im is 

cer ta inly  unstable ,  as is seen in Fig. 24, in which the d is turbed  flow develops 
in to  v ax. When  ano the r  d i s tu rbed  flow is t aken  as v,(t = 0) = - 0 . 0 0 1  for  n 
odd,  it  develops in to  v m.  v ~v~ looks  a lmos t  stable,  as is seen in Fig.  23, bu t  the  
modes  wi th  n o d d  are  no t  a t tenuated ,  a t  least  unt i l  t = 15.0; we call this 
quasis table ,  v ~2 and  v aI2 are  unstable ,  and  finally they t r ans fo rm into v ~1 or  
v m ,  depending  on the init ial  d is turbance.  Lee <~4~ and  M u r r a y  (~a) cons idered  
only v I~ as the unique  stable s teady solut ion.  However ,  our  compu ta t i on  
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Fig. 22. T i m e  deve lopmen t  o f  each  m o d e  of  the  secondary  flow (wi thou t  noise)  velocity 
with the  initial va lue  v,  = - 0 . 1  for  n = 2, and  wi th  v, = 0.0 for  n 4: 2, for  R = 100. 
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Fig. 23. Instabi l i ty  test for  each mode of  solut ion v zvl. 
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Fig. 24. Instability test for each mode of  solution vmL 

never showed any uniqueness in the final state of v(x). ~1 is also stable and 
approachable in the same right as v n. This fact was confirmed for the case 
N = 40. This may be understood by noticing that v I1 and v m are dual 
solutions of the basic Burgers equation defined by Eq. (6) [ v m ( x ) =  
_v~x(1 _ x)]. e 

Thus, we may expect that these two stable and one quasistable steady 
solutions mix together in the ensemble of  the randomly forced secondary 
flows at the final stationary state for R = 100, even though these solutions 
are always deformed to some degree by the random force action. To verify 
this fact, it is useful to see directly the structure of  the ensembles obtained, 
by means of  histograms, as is shown in the next section. 

6 Murray acknowledged in a private communication that both solutions, v zl and v xIz, are 
equally realizable and that the word "unique" was not  proper. 
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Fig. 25. Illustrations of the steady solutions of the Burgers equation (Ov[Ot = Xv). 

5. P S E U D O  T U R B U L E N C E  

The histograms of v, for n = 1, 2, and 3 in the stationary ensembles 
(corresponding to Figs. 3, 5, and 11) are shown in Figs. 26-28. The theoretical 
values for v, of our stable and quasistable steady solutions (i.e., v,~l, u," ~1, and 
v~ va) are indicated by dashed lines in the figures for comparison. Hence, it is 
known that if the level of the random force is very low [as in case (c) in the 
figures], the expectation (in Section 4) is fairly sharply realized. In this case, 
the ratio of the population of the neighbors to solutions v~ ~ and-v,~l to that of 
v~Vl is very large. Therefore, it is evident that the energy spectrum resulting 
from this ensemble is very close to that of the simple flow of solution v~ ~ or 
v, a~, as indicated by the solid line in Fig. 11. The sharpness of the v, distribu- 
tion also explains the comparative smallness of the velocity variance shown in 
Fig. 14. On the other hand, in the case of the higher noise level, i.e., cases (a) 
and (b), the population of v, diffuses more widely around solutions v~ 1, v~ ~, 

. ~v~ is relatively and ~w.  The fact that the population of the neighbors to v~ 
large results in the sawtooth-like configuration of the circles in Figs. 3 and 5, 
because v~ v~ has no components with n odd, according to Eq. (30), to con- 
tribute to E,  with n odd. The tendency of the energy spectra of these ensembles 
to exceed the solid line is explained by the tendency to diffuse toward regions 
of v, more energetic than v~ 1 and v~ ~. The comparative largeness of the 
velocity variance in Figs. 12 and 13 is also so explained. Since we have seen 
that all the ensembles for R = 100 are constituted by solutions v ~, v m, and 
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Fig. 26. Histograms of the first mode of the stochastic secondary flow velocity in the 
ensembles. 
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Fig. 27. Histograms of the second mode of the stochastic secondary flow velocity in the 
ensembles. 
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Fig. 28. Histograms of the third mode of the stochastic secondary flow velocity in the 
ensembles. 

v xvl and their neighbors, and that the neighbors to v ~1 are nearly as equally 
populated as are those to v m, then it is easy to understand that the average 
velocity profile for the ensemble, as plotted in Figs. 6 and 7, tends to result in 
the simple velocity profile of solution v ~w. Note that the average of v I1 and 
v H1 is just v ~w except in the shock-dissipation regions. 

A remarkable fact observed from the histograms is that the distributions 
of vn and then v(x) in the stationary ensembles for R = 100 are far from 
normal, but are concentrated in solutions v ~1, v m, and v ~w, resulting in two 
or three peaks. This is obviously rooted in the special nature of the one- 
dimensional Burgers flow which has more than one stable steady super- 
critical solution. 

Burgers identified each of the steady solutions as a turbulence solution, 
but such a turbulence is not the type that we imagine in real flows, A real 
turbulence is never steady, but behaves so irregularly and so unsteadily that 
it is necessary to follow the average flow behavior over a long time. For this 
reason, the statistical theory of turbulence began with hypothesizing the 
ergodicity, i.e., that such a time average can be equated to the ensemble 
average. We know that the statistical theory can be exactly formulated in the 
characteristic functional equation, with or without random force. The time 
we use in the characteristic functional equation is considered to be of such a 
large scale as to be able to describe the long-time behavior. For the stationary 
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state, the ergodic hypothesis is proved to be true by the method of stationary 
random functions, (9~ if it is the case with the generalized characteristic func- 
tional equation which describes a Markovian stochastic process. In fact, 
according to Panchev, (9~ the stationary random functions which guarantee 
the ergodic theorem should have the following two conditions: (1) the single 
probability density of functions is unique and time independent, and (2) the 
double probability density of functions only depends on the time difference. 
The single and double probability densities to be derived from our generalized 
characteristic functional equation usually satisfy the two conditions. (As for 
the uniqueness proof of steady-state solution in the cylinder functional 
approach as assumed in Eqs. (12)-(13), the reader is referred to Ref. 15.) 
However, for the case of the Hopf equation, there ~mains  some question, in 
general, of the uniqueness of the steady-state solution for the reason described 
in the introduction. [Then, from our standpoint, i~ may be considered that 
such stationary random functions found in practice, such as wind velocity, 
etc., (9~ are not actually exactly governed by the Hopf equation (based on a 
deterministic dynamics) but rather the generalized characteristic functional 
equation (based on Langevin-type dynamics).[ 

Therefore, in stationary, randomly forced Burgers flow, we must con- 
sider that, even though an individual flow has approached very near one of 
v ~1, v m, and v ~vl, it will move out of there, by virtue of an accumulated 
random-force effect, in order for the time average to be equal to the ensemble 
average. Without random force action, however, this never happens. In fact, 
as was shown in the last section, individual flows approach either solution v n 
or v m asymptotically (v ~v~ would eventually be unstable). Then the long- 
time average of an arbitrary individual flow is two-valued, while the ensemble 
average should be single-valued, as v ~vl. Hence, it is obvious that the Hopf 
equation, at least dealing with the present one-dimensional Burgers flow, 
produces neither ergodicity nor stationary random functions. 

To be sure, our stationary, randomly forced Burgers flow is ergodic, 
but the time of averaging should be very large if the random force is weak. 
If the time of averaging is not large enough, the time-averaged behavior of 
an individual flow will present the flow given by v n, v m, or some inter- 
mediate between them. This is a disturbing situation, which confuses an 
observer of experiment. Such an unstable condition would hardly happen if 
there is at most one or no stable supercritical steady solution of the basic 
dynamical equation in question (as is usually expected in real flow). Therefore, 
it may be more suitable to call the excited state of the present randomly forced 
Burgers flow a pseudo turbulence. The pseudo turbulence is characterized by 
the fact that the distribution of v is far from normal because there are several 
peaks. In this case, of course, any quasinormality approach, ~6~ as well as the 
Wiener-Hermite expansion method, (17~ will not be effective. However, it is 
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worth noting that the statistical theory of turbulence, based on ensemble 
mechanics, sometimes brings forth a pseudo turbulence, 

6. C O N C L U S I O N  

In this work, we showed that the generalized characteristic functional 
equation (1) is numerically solvable with the aid of the Monte Carlo quad- 
rature. As a result, the important, but peculiar, feature of the randomly 
forced, one-dimensional inhomogeneous Burgers flow was clarified. For the 
two-dimensional Burgers flow, however, we may have a more realistic turbu- 
lence, since there is Burgers' proof that this flow has no nonvanishing steady 
solution3 TM We plan to treat a randomly forced Navier-Stokes flow by the 
same method, although it is apparent that the success will depend not only on 
the capacity of the computer available, but also on the development of some 
new technique of approximating a highly multidimensional integral. 

R E F E R E N C E S  

1. E. A. Novikov, Soviet Phys.--JETP 20:1290 (1965). 
2. S. F. Edwards, J. FluidMech. 18:239 (1964). 
3. I. Hosokawa, J. Phys. Soc. Japan 25:271 (1968). 
4. D. T. Jeng, Phys. Fluids 12:2006 (1969). 
5. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, New York (1959), 

Chapter 17. 
6. G. E. Kelly and M. B. Lewis, Phys. Fluids 14:1925 (1971). 
7. I. Hosokawa, Nagare ( J. Fluid Mechanics Assoc., Japan) 3(2):40 (1971). 
8. E. Hopf, J. Rat. Mech. Anal. 1:87 (1952). 
9. S. Panchev, Random Functions and Turbulence, Pergamon Press, Oxford (1971), p. 41. 

10. T. Tatsumi and N. Ikeda, Inst. Space Aero. Sci., Univ. Tokyo, Rep. 2:A-73 (1966). 
11. J. M. Burgers, Advanced Applied Mechanics, Vol. 1, Academic Press (1948), p. 171. 
12. I. Hosokawa, J. Math. Phys. 11:657 (1970). 
13. J. D. Murray, J. Fluid Mech. 59:263 (1973). 
14. J. Lee, J. Fluid Mech. 47:321 (1971). 
15. A. H. Gray, Jr., J. Math. Phys. 6:644 (1965). 
16. I. Proudman and W. H. Reid, Phil. Trans. Roy. Soc. A 247:163 (1954); T. Tatsumi, 

Proc. Roy. Soc. A 239:16 (1957); M. Millionshchikov, Doklady Acad. Sci. SSSR 
32:619 (1941). 

17. W. C. Meecham and A. Siegel, Phys. Fluids 7:1178 (1964). 


